A new data-driven neural fuzzy system with collaborative fuzzy clustering mechanism
نویسندگان
چکیده
In this paper, a novel fuzzy rule transfer mechanism for self-constructing neural fuzzy inference networks is being proposed. The features of the proposed method, termed data-driven neural fuzzy system with collaborative fuzzy clustering mechanism (DDNFS-CFCM) are; (1) Fuzzy rules are generated facilely by fuzzy c-means (FCM) and then adapted by the preprocessed collaborative fuzzy clustering (PCFC) technique, and (2) Structure and parameter learning are performed simultaneously without selecting the initial parameters. The DDNFS-CFCM can be applied to deal with big data problems by the virtue of the PCFC technique, which is capable of dealing with immense datasets while preserving the privacy and security of datasets. Initially, the entire dataset is organized into two individual datasets for the PCFC procedure, where each of the dataset is clustered separately. The knowledge of prototype variables (cluster centers) and the matrix of just one halve of the dataset through collaborative technique are deployed. The DDNFS-CFCM is able to achieve consistency in the presence of collective knowledge of the PCFC and boost the system modeling process by parameter learning ability of the self-constructing neural fuzzy inference networks (SONFIN). The proposed method outperforms other existing methods for time series prediction problems.
منابع مشابه
DISTRIBUTED AND COLLABORATIVE FUZZY MODELING
In this study, we introduce and study a concept of distributed fuzzymodeling. Fuzzy modeling encountered so far is predominantly of a centralizednature by being focused on the use of a single data set. In contrast to this style ofmodeling, the proposed paradigm of distributed and collaborative modeling isconcerned with distributed models which are constructed in a highly collaborativefashion. I...
متن کاملApplication of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results
Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...
متن کاملApplication of Pattern Recognition Algorithms for Clustering Power System to Voltage Control Areas and Comparison of Their Results
Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...
متن کاملThe Application of Combined Fuzzy Clustering Model and Neural Networks to Measure Valuably of Bank Customers
Currently, acquisition of resources in banks is subject to attraction of the resources of banking customers. Meanwhile, the Bank’s valuable customers are one of the best resources to make profit for banks. Several different models are introduced for evaluation of profitability of the customers; but most of them are classical models and they are unable to evaluate the customers in complete and o...
متن کاملBreast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm
Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used. First,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 167 شماره
صفحات -
تاریخ انتشار 2015